Главная » Статьи » Наука. Физика магии

Памяти Эдварда Нортона Лоренца: «ЭФФЕКТ БАБОЧКИ»

Памяти Эдварда Нортона Лоренца: «ЭФФЕКТ БАБОЧКИ»

Вторая потеря американской и мировой науки за эту неделю. Вслед за физиком Джоном Уилером ушел из жизни выдающийся американский математик и метеоролог Эдвард Нортон ЛОРЕНЦ. Ученый скончался в среду в возрасте 90 лет у себя дома в Кембридже, штат Массачусетс.

Эдвард Лоренц прославился своими исследованиями в области теории хаоса, в рамках которой он открыл так называемый "эффект бабочки", описывающий чувствительную зависимость поведения системы от начальных условий. Свое открытие он иллюстрировал примером бабочки из Бразилии, взмах крыла которой вызывает цепочку сложных климатических изменений и приводит к урагану в Техасе.

Эдвард Нортон ЛОРЕНЦ (Edward Norton Lorenz) [23.05.1917-16.04.2008] — американский математик и метеоролог, один из основоположников Теории Хаоса, автор Эффекта бабочки, Аттрактора Лоренца.

С 1946 года работал в Массачусетском технологическом институте, профессор. Является членом Американской академии гуманитарных и естественных наук, Американского метеорологического общества и Национальной академии наук США.

Иностранный член по Отделению океанологии, физики атмосферы и географии (геофизическая гидродинамика) АН СССР (с 1991 — РАН) с 27 декабря 1988 г.

В 2004 награжден Большой золотой медалью имени М. В. Ломоносова.

Джеймс Глейк

Памяти Эдварда Нортона Лоренца:
«ЭФФЕКТ БАБОЧКИ»

Глава из книги «Хаос: создание новой науки»

 

"Физикам нравится думать, будто все,
что надо сделать, сводится к фразе:

вот начальные условия; что случится дальше?"

 

Ричард Ф. Фейнман

 

"... сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке..."

Солнце катилось по небу, никогда не знавшему облаков. Ветры обтекали землю, гладкую, как стекло. Ночь никогда не наступала, осень никогда не сменялась зимой. Никогда не шел дождь. Погода, смоделированная новым компьютером Эдварда Лоренца, менялась медленно, но вполне определенно, напоминая ясный полдень в межсезонье, как будто мир превратился в сказочный Камелот или некое подобие Южной Калифорнии.

Из своего окна Лоренц мог наблюдать более реальные картины: утренний туман, окутавший почти весь кампус Массачусетского технологического института, или низкие облака с Атлантики, нависающие над верхушками крыш. Ни то ни другое не появлялось в его компьютерной модели. Сама вычислительная машина модели «Royal Мс'Вее» — скопище проводов и вакуумных ламп — занимала добрую половину кабинета Лоренца, была раздражающе шумной и ломалась не реже раза в неделю. Это устройство не обладало ни достаточным быстродействием, ни объемом памяти, необходимым для того, чтобы построить реальную модель атмосферы и гидросферы Земли. И все же в 1960 г. Лоренц создал мини-модель погоды, которая привела в восторг его коллег. Каждую минуту компьютер выдавал стройные ряды чисел. Посвященным они сообщали, что господствующее сейчас западное направление ветра скоро сменится на северное, потом на южное и вновь на северное. Оцифрованные циклоны в компьютере Лоренца медленно кружились по воображаемому глобусу. Как только об этом узнали на факультете, преподаватели и старшекурсники стали заключать пари, пытаясь угадать, какой будет искусственная погода в каждый следующий момент. И почему-то машина не повторялась.

Лоренц просто наслаждался погодой — весьма полезная наклонность для исследователя-метеоролога. Смакуя изменчивость атмосферных явлений, он постигал природу происходящего в скоплениях воздушных вихрей и циклонов, которые, неизменно подчиняясь математическим законам, в точности не воспроизводились ни разу. Ученому казалось, что облакам присуща особая структура. Раньше он опасался, что научное исследование погоды сродни попыткам разобрать шкатулку с секретом при помощи отвертки. Теперь же Лоренц гадал, способно ли вообще рациональное знание проникнуть в это таинство. Погода обладала свойствами, какие нельзя объяснить с помощью средних величин. Средняя температура июня в Кембридже и Массачусетсе держится на уровне 75 градусов по Фаренгейту... Дождливая погода в Эр-Рияде (Саудовская Аравия) в среднем выпадает на 10 дней в году — вот о чем говорила статистика. Суть же состоит в том, как сменяются модели атмосферных процессов с течением времени. Именно ее и сумел ухватить Лоренц.

Творец и вседержитель компьютерной Вселенной, он волен был устанавливать законы природы по своему усмотрению. После нескольких проб и ошибок, отнюдь не божественного свойства, он выбрал двенадцать уравнений описывающих связь между температурой и атмосферным давлением, а также между давлением и скоростью ветра. Лоренц применил на практике законы Ньютона — вполне подходящий инструмент для Небесного Часовщика, который сотворил мир и устанавливает завод на вечность. Благодаря детерминизму физических законов дальнейшего вмешательства не требовалось. Творцы машинных моделей верили, что ныне и во веки веков законы движения подводят под их расчеты базу математической определенности. Постигни закон — и ты поймешь Вселенную! В этом заключалась философия компьютерного моделирования погоды.

Рассмотрим знаменитый пример, весьма наглядно демонстрирующий, что стоит за термином «хаотическая динамика». Эдвард Лоренц из Массачусетского технологического института в 1961 году занимался численными исследованиями метеосистем, в частности моделированием конвекционных токов в атмосфере. Он написал программу для решения следующей системы дифференциальных уравнений:

dx/dt = s(-x + y),
dy/dt = rx – y – xz,
dz/dt = -bz + xy.

В дальнейших расчетах параметры s, r и b постоянны и принимают значения s = -10, r = 28 и b = 8/3.
Согласно описанию эксперимента, принадлежащему самому Лоренцу, он вычислял значения решения в течение длительного времени, а затем остановил счет. Его заинтересовала некоторая особенность решения, которая возникала где-то в середине интервала счета, и поэтому он повторил вычисления с этого момента. Результаты повторного счета, очевидно, совпали бы с результатами первоначального счета, если бы начальные значения для повторного счета в точности были равны полученным ранее значениям для этого момента времени. Лоренц слегка изменил эти значения, уменьшив число верных десятичных знаков. Ошибки, введенные таким образом, были крайне невелики. Но самое неожиданное было впереди. Вновь сосчитанное решение некоторое время хорошо согласовывалось со старым. Однако, по мере счета расхождение возрастало, и постепенно стало ясно, что новое решение вовсе не напоминает старое.
Лоренц вновь повторял и проверял вычисления (вероятно, не доверяя компьютеру), прежде чем осознал важность эксперимента. То, что он наблюдал, теперь называется существенной зависимостью от начальных условий --- основной чертой, присущей хаотической динамике. Существенную зависимость иногда называют эффектом бабочки. Такое название относится к невозможности делать долгосрочные прогнозы погоды. Сам Лоренц разъяснил это понятие в статье «Предсказуемость: может ли взмах крылышек бабочки в Бразилии привести к образованию торнадо в Техасе?», опубликованной в 1979 году.

Аттрактор Лоренца.

Несмотря на большую значимость эксперимента Лоренца, в данной курсовой работе не будут рассматриваться модели, связанные с динамическими системами, описываемыми дифференциальными уравнениями. Напротив, мы будем рассматривать наиболее простые модели хаотической динамики --- дискретные, к которым относится знаменитое и вездесущее множество Мандельброта и сопутствующие ему множества Жюлиа.

Продолжение=>>



Источник:
Категория: Наука. Физика магии | Добавил: namerenie9 (30.09.2011)
Просмотров: 6259 | Рейтинг: 5.0/2
Счетчик посещаемости и статистика сайта
Яндекс.Метрика